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Synopsis 

Equations describing the sorption kinetics of symmetrical slabs with 2-N laminae each with 
constant diffusion and partition coefficients in well-stirred semiinfinite and finite baths are presented. 
Their application is illustrated using slabs with N = 3. 

INTRODUCTION 

Equations have been reported describing transient sorption by homogeneous 
slabs and by symmetric laminate slabs of two components in well-stirred semi- 
infinite and finite baths, sometimes imposing constant concentration gradients, 
with constraints of constant diffusion and partition coefficients in each lam- 
ina.l-1° This article provides general equations for the transient sorption by 
symmetrical slabs with 2N laminae each with constant diffusion and partition 
coefficients in well-stirred semiinfinite and finite baths. Equations for a specific 
system are obtained directly by inserting the system parameters into the general 
equations. They are formulated in a manner suitable for computer evaluation 
as the specific quantities can be obtained by systematic evaluation of determi- 
nants and summations and are applicable in the range of moderate to large time. 
The procedure is illustrated by application to a symmetrical laminate slab with 
N = 3. 

DIFFUSION EQUATIONS FOR SEMIINFINITE BATH SYSTEMS 

The basic system is a symmetrical laminate slab of 2N laminae in contact with 
a semiinfinite well-stirred bath, schematically presented and indexed in Figure 
1. The system is also equivalent to an N-laminate slab with the exposed face 
of the Nth layer rendered impermeable. 

The permeate concentration in the semiinfinite bath is a constant, co. The 
concentration in each lamina prior to exposure to co is uniform, Ci in laminaj, 
and is related to the initial concentration in the bath, c', by the partition coef- 
ficient K, = C:/cz. Equilibrium is maintained at each phase interface described 
by K1= Cy/cO at x = xg and by K,-1,, = C,-l/C, at x = x,-l, for j = 2,. . . , N. For 
the symmetrical laminate, the interface at x = XN is treated as impermeable. 
Each lamina is also described by a constant diffusion coefficient D, and a 
thickness X ,  = x, - ~ ~ - 1 ,  j = 1,. . . , N .  The total thickness of the free slab is 
L = 22y=1x,. 

The differential equations and boundary conditions are 

Journal of Applied Polymer Science, Vol. 25,2807-2814 (1980) 
0 1980 John Wiley & Sons, Inc. 002 1 -8995/80/0025-2807$01 .OO 



2808 SPENCER AND BARRIE 
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Fig. 1. Schematic representation of a symmetrical laminate membrane system of 2N laminae in 
a semiinfinite bath. 

C,(x,O) = C; < x < x i ,  j = 1 , .  . . , N (3) 
K . -  C.-  
Kj Cj 

K j - l , j = A = A  x = x ~ - ~ , ~ =  2 ) . . . ,  N 

Application of the Laplace transform method4 using the inversion theorem 
provides solutions 

m 2[Af;3j-ly n,,, . 2 . -  , 1(x)  + Af;2jYn,j,2j(x)]e-DN"t,t 

n= 1 blAl 
Cj(X,t)  = cy + (cp - Ci,) c 

aNn ( b a N ) l l  

J = 1, . . .) N (6) 
where Cy is the concentration in lamina j in equilibrium with the bath concen- 
tration co and 1A I is the determinant of the elements A l k  of order 2N generated 
by applying j in sequence 1, . . . , N as follows: 

j = 1, 1 = 2j  - 1; All = i sin ~ 1 x 0 ,  A12 = cos alxo 
. .  j = 2 .  . . N ,  1 = 2 j  - 2; Al,l-l = -L sin a j - 1 X j - 1 ,  Al,l= -COS a j - l X j - 1 ,  

Al,~+1 = iKj-lj sin c ~ j x j - ~ ,  A1,~+2 = Kj-l,j cos a+,--1 (7) 
j = 2 . .  . N ,  1 = 2j  - 1; A~1-2 = 6,-l,j cos aj-1xj-1, 

A L , J - ~  = i 6 j - l . j  sin c ~ j ~ ~ x j - 1 ,  Al,l = -cos ajxj-1, A ~ J + ~  = -i sin ajxj-1 

j = N ,  1 = 2N; A 2 ~ , 2 ~ - 1  = COS ( Y N X N ,  A ~ N , ~ N  = i Sin CYNXN 

and all other A l k  = 0, with 6j-1,j = (D,-l/Dj)1/2. The A192J-1 and A1>2j are the 
cofactors of A1,zj-l and Al,2jt respectively, and Yj,zj-l(x) = i sin ajx ,  Y j , Z j ( X )  
= cos ajx, j = 1 , .  . ., N .  

The (YN are the nonzero positive roots of 

IAI = O  (8)  
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indexed as a N n ,  where aj = a N / f i j N .  

tains 
For the reduced change in the diffusant mass in the membrane, F ( t ) ,  one ob- 

- Ak2' (sin oljnxj - sin a,nxj-l)] 

where M o  = Z F l C g X j ,  M i  = Z F l  CfXj ,  and M ( t )  = Zy=l J:$-, C j ( x , t )  d x .  
In some applications, lamina 1 is a film formed in the bath medium in which 

the laminate j = 2,. . . , N is placed to initiate sorption, which in this case com- 
mences at x = XI. The differential equations and boundary conditions are 
provided in eqs. (1)-(5), with eq. (3) replaced by 

Cl(X,O) = c! xo I x < x1 

xi-1 I x I xi ,  j = 2, .  . . , N Cj(x,O) = Cj  
The solutions are 

m 

Cj(X,t)  = cg + (C? - Ci,) c 
n= 1 

2[AyJ-ly n,J, . 2.- 1(x )  + A2,2jYn,i,2j(~)]eDNo12,,t 
X j = 1, .  . ., N (11) 

a N n  (z)n 
where IA I is again defined and evaluated as in eq. (7). The reduced change of 
the diffusant mass in the membrane, j = 2 , .  . . , N ,  plus in the film, j = 1, is 

c -  C i - C f  2e-Da2N.t N 1 

j = 1  a;n 
F ( t )  = . c M z  - M o  n=l 

a N n  (E)n 
X x[~A:~'-'(cos ajnxj - cos ajnxj-1) - A:2' (sin ajnxj - sin a j n ~ j - l ) ]  (12) 

DIFFUSION EQUATIONS FOR FINITE BATH SYSTEMS 

The basic system is a symmetrical laminate slab of 2N layers in contact with 
a well-stirred bath of volume V which replaces the semiinfinite bath of the pre- 
vious system. The initial diffusant concentration in the bath contacting the slab 
at  x = xo is co. The remainder of the system is as described for the system in 
Figure 1. 

The differential equations and boundary conditions are given by eqs. (1)-(5), 
with eq. (2) replaced by 

where Hj = KjVj/V, j = 1,. . . , N ,  is the ratio of the amount of diffusant in lamina 
j to the amount in V at  equilibrium. 
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Application of the Laplace transform method4 provides the solutions 
(C? - Ci.) 

Cj(X,t) = cj + I ’ + 2 ( C i  - C ? ) X ,  
N 

1 +  C Hj 
j =  1 

m i[A;2J-’y . . ( ) + A p y  . .(  n,j ,2j-1 x n,j ,2j  x)I x c  
n= 1 

6W (z)n 
X x e p D N a 5 n t  j = 1,. . . , N (14) 

where IA 1 is the determinant generated according to eq. (7), except that A l l  and 
A 12 are replaced by 

j = 1 , 1  = 2 j  - 1; A l l  = H1 cos ( ~ 1 x 0  + (~1x1 sin ( ~ 1 x 0  

A12 = i[H1 sin ( ~ 1 x 0  - a l X 1  cos ollxo] (15) 
Evaluating eq. (14) a t  x = xg, using K1 = C J c ,  and rearranging, one obtains for 
the reduced change in the diffusant concentration in the bath volume V 

where 

Other useful reduced concentration changes are given by 
c ( t )  - cf N 

c f  - cl 
S ( t )  = 

and 

j =  1 

When lamina 1 is a film formed in the medium in which the slab j = 2, . . . , N 
is placed to initiate sorption, the boundary conditions are expressed by eqs. (l), 
(4), (5), (lo), and (13), and the solutions are 
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where 

APPLICATION TO LAMINATES WITH N = 3 

The laminate with N = 3 is used here to illustrate the reduction of general 
expressions to specific systems. 

Semiinfinite Bath 

The determinant generated according to eq. (7) with N = 3 is 

IA I  = 
i sin a l x o  
-i  sin 

a1X: 1 

612 cos 
a1x1 

0 

0 

0 

0 
i K l 2  sin 

a2x 1 

-cos 
a2x 1 
-i sin 

623 cos 

0 

a2x2 

2 

0 
K l 2  cos 

a2x 1 

-i  sin 
a2x 1 

a2x 2 
i623 sin 

azx 2 
0 

-cos 

0 
0 

0 

i K 2 3  sin 
ff3XZ 

-cos 
a 3 x 2  

cos a 3 x  3 

0 
0 

0 

K 2 3  cos 
013x2 

-i  sin 

i sin ( ~ 3 x 3  
ff3x2 

which reduces to 

IAI = sin a l X 1  cos a2X2 sin a3X3 

+ 623K23 sin a l X 1  sin (~2x2 cos a3X3 + 612K12 cos a l X 1  sin a2X2 sin a3X3 

- 613K13 cos ~rrlX1 cos a2X2 cos (~3x3 (24) 

The ajn are determined from IA I = 0, and (bl A I/ba3)n becomes 
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Substituting eqs. (25) and (26) into eq. (9) and using the relation 

yields 
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where 

The R, are the nonzero positive roots of 

tan R, tan - A23Rn - d23K23] = 0 (32) 
6 23 

Finite Bath 

The determinant I A I for the system with N = 3 generated according to eq. 
(7) is given by eq. (23), with terms All and A12 replaced by the expressions pro- 
vided in eq. (15). The determinant reduces to 

IAI = i ( [ H ,  cos a l n X l  - a l n X l  sin a l n X l ]  

X [cos ~ ~ 2 ~ x 2  sin ~13~x3 + 623K23 sin ~12~x2 cos asnX3] 
+ 612K12[H1 sin 0l1,Xl + ~11~x1 cos al,X1] 

(33) 

The a,, are determined from [ A  I = 0. Finally, following eq. (16) using R, = 

x [sin 012nX2 sin ~ 1 3 n X 3  + 623K23 cos a2nX2 cos ~ ~ 3 n X 3 ] ]  

a3nX3, 

where 

and 
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